
Design Alternatives for Process Group
Membership and Multicast*

Kenneth P. Birman °°
Robert Cooper
Barry Gleeson

TR 91-1257
(replaces 91-1185)

December 1991

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This paper is a revision of TR91-1185 (Jan. 1991)
**The first two authors are in the Dept. of Computer Science, Come, University, and
were supported under DARPA/NASA grant NAG 2-593. The third author is with the

UNISYS Corporation, San Jose, CA.

Design Alternatives for Process Group Membership and Multicast*

Kenneth P. Birman Robert Cooper Barry Gleeson

December 18, 1991

Abstract

Pmcem groups are a n&tural tool for distributed programming, and are increasingly impor-

tant in distributed computing environments. However, there is little agreement on the most

appropriate semantics for process group membership sad group communication. These issues

are of special importance in the [sis system, s toolkit for distributed programming [Birgl]. Isis

supports several styles of process group, and a collection of group communication protocols

spanning a range of atomicity sad ordering properties. _ flexibility makes IsIS adaptable

to a variety of applications, but is also a source of complexity that limits performance. This

paper reports on a new architecture that arose from an effort to simplify Isis process group

semantics. Our findings include a refined notion of how the clients of &group should be treated,

what the properties of a multicast primitive should be when systems contain large numbers of

overlapping groups, and a new construct called the ¢4uaiify domain. As an illustration, we

apply the architecture to the problem of converting processes into fault-tolerant process groups

in s manner that is _transparent" to other processes in the system. A system bssed on this

arclntecture is now being implemented in col]&boratioa with the Chorus and Msch projects.

Keywords: distributed computing, fault-tolerance, Isis, process groups, virtual synchrony,

causal multicsst, atomic broadcast.

1 Introduction

Isis is a toolkit for distributed programming that provides a set of problem-oriented tools built

around process groups and reliable group multicast [BJ8T, BSSgl]. Process groups are a natu-

ral abstraction and have been used in a number of distributed systems [CZ85, OSS80, KTHB89,

tThis paper is a revision of TR 91-1185 (Jan. 1991)
"The first two authors are in the Dept. of Computer Science, Cornell University, and were supported under

DARPA/NASA grant NAC,-2-595. The third author is with the UNISYS Corporation, San Jose, Ca-

LLS90, PBS89, AGHR89]. However, the precise characteristics of group facilities differ among these

systems, as do the protocols employed to implement them. The primary goal of this paper is to

sort throuSh the design choices at this level, arriving at a process group architecture that is simple,

powerful and appropriate. A secondary goal is that the architecture should admit elegant solutions

to classical problems in this area, such as transforming a prc_ram into an equivalent fault-tolerant

one, without sacrificing efficiency.

As evidence in support of our arguments we show how the architecture can be used to derive a

simple fault-tolerance transformation. Consistent with our goals, the solution would (theoretically)

perform as well as the best known solutions to this problem. Despite the fact that it would achieve

high levels of concurrency, the solution is fully described at a high level and is surprisingly easy to

understand.

Our analysis draws on experience with the Isis system, which has been distributed to hundreds of

sites since the first public software release in 1987. Isis is presently used in diverse settings such

as brokerage and banking applications, value-added telecommunications systems, wide-area seis-

mic data collection and analysis, factory floor automation, document flow, distributed simulation,

scientific computing, hi_,rh-&vailabllity file management, reactive control, database inte_ation, ed-

ucation and research [BC90]. Through participation in the design of a number of these distributed

systems, we have gained insight both into the successful aspects of the technology, and those in

need of further work.

Successful Isis applications often share two characteristics:

They depend on consistent, distributed process group state. Isis provides tools for reading and

writing replicated data, adapting to failures, transferring group data to new members, and

viewing group membership. Many Isis applications using these tools rely on the guarantee

that group members see mutually consistent sequences of updates for replicated information.

and that a process can join the group and obtain its "current" state without possibly missing

an update or seeing one twice. This property is useful for more than just replication of

data. For example, group members are able to react to external events in & coordinated way,

treating the group membership list as a form of data replicated among the members without

running an additional agreement protocol.

They employ large numbers of groups. Isis was designed assuming that typical applications

would be organized into some (small) number of fault-tolerant distributed servers, each im-

plemented using a single process group. However, many Isis users seized upon groups as a

fine-grained structuring construct, building applications with large numbers of overlapping

groups. This trend motivates several of the architectural changes discussed below.

2

Groupsaxeused in a variety of ways in Isis applications:

Groups used for fault-tolerance. Here, some of the components of a system are transparently

replaced by fault-tolerant process groups that mimic the original components. As we demon-

strate in Section 5, our architecture permits this to be done without changing programs that

interact with the modified components.

Groups as services with clients. In this case, group members provide services to client pro-

grams, either in a request-reply style, or through a registration interface with repeated call-

backs (e.g. a broker's workstation might subscribe to a stock price publication service, receiv-

ing callbacks each time the price changes). Multi-level servers are common, with the processes

that implement one service registering as clients of other services.

Process groups for distributed or replicated objects. In these applications, an object is typically

an abstract data type with small state 1 that may change rapidly. Reasons for replicating

objects include improved fault-tolerance, and increased performance through concurrency or

coherently replicated data.

Groups used/or parallel programming. Several scientific computing projects have employed

Isis to obtain coarse grained parallelism and fault-tolerance in simulations and graphics ap-

plications, running on networks of high-performance workstations.

Groups used for fault-tolerant, distributed system management. Isis has been used in application-

oriented monitoring and control software for high-reliability, autonomous, distributed systems.

The underlying application will often make no explicit use of Isis, although hooks may be

included to perufit the monitoring system to intervene when necessary.

The numbers and uses of groups differ substantially from our original expectations, dating to when

Isis was first developed. This has brought into question several of the basic assumptions underlying

the initial architecture, leading us to ask how the system might need to be re-designed to simplify

future development, improve performance and exploit emerging operating systems and hardware

technologies, such as communication devices supporting high-speed multicast.

This paper focuses upon the following questions:

• Why is explicit system support for process groups and group communication necessary?

xLarger database-style objects would normally be managed using conventional database packages. Ists tools can

be combined with such packages, and • mechanism for dealing with dr•abases hi included within the toolkit.

3

• What typesof groups are needed in distributed systems, and what patterns of client-server

interactions should be supported?

• What should be the semantics of communication and membership in a single process group?

• How should these semantics be extended to multiple, overlapping groups?

• How can a process group system take a_ivantage of the emerging generation of modular

operating systems?

We note that although the paper is intended to be self-contained and to define the terminology

used, the issues considered here arise from the many, often contradictory, approaches to process

groups and group communication that have been advanced. This results in a somewhat abrieviated

presentation of some of the alternatives, and may make the paper di_cult to read without some

prior knowledge of the field.

2 Process groups

This section refines our terminology and confronts the first of the design questions: at what level

groups and multicast should implemented.

2.1 Group membership

A process groep k a collection of communication endpoints that can be referenced as a single entity.

Communication endpoints can be implemented In a number of ways. In Unix, each Isis process

creates a socket which can be referenced by its internet address. A communication endpoint would

correspond to a send-right In Mach, an entity-ID in the V-System, a port UI in Chorus, or a

capability In Amoeba. We assume multiple threads sharing an address space (i.e. a process in Unix

or Amoebz, & task in Math, or an actor in Chorus). This permits an address space to own several

communication end-points, thus decoupllng us from any specific model of processes or memory.

Following the cmawmtions of other group-based projects and the original Isis implementation, we

will continue with the term proce_ group, In this paper, rather than port group. However, our new

architecture does allow multiple end-points per process.

2.2 Why provide support for process groups?

The process group membership mechanism comprises the algorithms used to support joining and

leaving groups, and to query the current membership list. One might ask whether these operations

are more appropriately realized at the application level, or in a shared software subsystem such as

Isis. Three issues azise: the importance and generality of the group mechanism, the performance

implications of an application-level implementation, _nd the complexity of the solution.

Standardization. In Isis applications, process groups are &basic and heavily used programming

construct. Assuming that a single, general mechanism can support a diverse user community

without becoming encumbered by numerous special features - and we will argue that this is

so - standardization has obvious benefits.

Complezity. The protocols required to support process groups are subtle and diffcu/t to

implement correctly. If non-experts are to use group-ba_.,d programming structures, such as

replicated data, there may be no choice but to implement the group mechxn;sm in a shared

subsystem.

Perforn_nce. The complexity of the protocols implies that it will be difficult to make a]/the

necessary engineering decisions and performance trade-offs correctly. For example, it is by

no means clear a-prior_ whether membership lists should be replicated at all group members,

or cached at some smaller set of sites. In fact, we believe that there are strong technical and

performance arguments in favor of a direct replication approach, but these arguments come

down to engineering considerations that a typical user of s system might not be knowledgeable

enough to make. 2

In a shared software subsystem, these issues would be addressed by the implementor of the sub-

system - not by the authors of the applications that use the subsystem. This is desirable because

it permits the largest possible set of users to benefit from the insight of a small, expert group of

designers.

Our preference for s system-supplied mechanism th&t explicitly manages group membership and

replicates this information directly among the members may seem unreasonably biased in favor of

making communication cheap at the expense of a more costly group membership facility. One might

question this choice. As a matter of fact, we are familiar with applications in which changes to group

membership a_ more frequent than communication. Fortunately, it is generally possible to convert

_membership intensive _ applications into communication intensive ones. For example, consider an

application in which messages are sent to the set of idle secrets in a compute service. If servers

perform short tasks, membership in this group could _ rapidly. On the other hand, the full set

SOur work on Isls employs protocols in which replicatins membership information hu important performance

advantages. But, it hu taken us years of protocol design, implementation, and experimentation to arrive at this

conclusion, and it is unlikely that a typical programmer would employ the beet known solution if this is at x]]
complex.

of serversprobablychangesslowly. Our experiencesuKKestsrapidly changingad-hocgroups are

almost _lways subsets of more stable enclosing groups. Given a system in which group membership

changes are relatively costly but conmmunlc&tion is cheap, a a cost-effective solution would be to

have the server group treat the "subset of lightly loaded servers" as a form of dynamically updated

replicated data. Changes to the subsetwillnow be cheap.

We conclude that a system-levelgroup facilityisneeded, and that accurateknowledge of group

membership should be availableto processesthat commonly initiatemulticaaststo the group.

2.3 Which processes should be allowed to send to a group.*

In some systems iLLS00, PBS89] only members of a group may multicast to it. This simplifies

_proup management but does not reflect the way programmers use _)ups, at least in Isis. In

such an approach, client programs that wish to communicate with a service implemented by a

group must either join the group (which does not scale well), or use point-to-point communication

with individual group members (requiring the application programmer to implement a non-trivial

protocol, and in particular to solve a difficult fault-toleranos problem in the case where the "agent"

We believethat processgroups willoften have both members and clients,and hence that this

issuewillbe commonly encountered in any system supportinggroup programming. For example,

a common use of groups in futuredistributedsystems willbe to make a system component fault-

tolerantusingreplication(we givea protocolforthisinSection5).Here,thefault-tolerantprogram

willbe the group, and the programs thatinteractwith itwillbe clients.Moreover,one would not

wish to requirethat such clientsbe aware that they &re interactingwith a group,as opposed to a

singleentity.

We conclude that a client-servermodel should be supported,in which clientscan communicate

reliablyand transparentlywith groups. Implicationsofsupportingsuch a notionof "clients"will

be examined in depth in Section 3.1.

2.4 Should group multicast provide "strong guarantees"?

Early work on process groups, such as the work in the V-system [CZ85], provided best-effort

communication guarantees. Given a processgroup with stablemembership, and assuming that

nothing failsand that the communication subsystem isworking reasonablywell,the V multicast

deliversa message to allgroup members. Ifany oftheseguaranteesisnot satisfied,some members

6

might not receivea message. Moreover,the order in which messages are deliveredcan differfrom

member to member.

Isisdiffersfrom the V-system in adoptinga multicastlayerwith verystrongsemantics:a program

that usesIsismulticastknows exactlywhat to expect. We believethat thisisone of the major

reasonsthatIsishas turned out to be so easy to program in comparison with V, where the group

multicastfacilitywas used primarilytolocateresources.However, itisnot enough tosimply accept

thata multicastshould providestrongguarantees.Multicastcan be presentedin many ways, and

with many sortsofguarantees.What optionsexistat thislevelof a system?

Various models of multicastinteractionhave been proposed: asynchronous, all-reply,one-reply,

_reply, and so forth. Isissupports allof these and our users have found them allimportant.

Moreover, a group may receivemultiplemulticastsconcurrently,or a stream of multicastsfrom a

singlesender. For thisreason,communication primitivesoftenprovidesystem-enforcedordering

properties.3 Other potentiallyimportant propertiesincludefailureatomicity,namely all-or-nothing

deliveryguaranteeseven ifprocessesor processorsfailduring a multicast,and membership atom.

icity,namely the guaranteethatgroup membership changes are totallyordered and synchronized

with group communication.

Figure 1 illustrates two extremes for group communication. In an unordered ezecution no atomicity

guarantees are provided. In a closely synchronoua execution, one event occurs at a time, and

multicaat messages are delivered atomically to the full membership of the group at a single logical

instant, during which both address expansion 4 and delivery occurs. The virtually synchronous

execution model supported by Isis is indistinguishable from a closely synchronous execution for

a correct program, but relaxes synchronization to improve performance. Multicast ordering and

atomicity issues are discussed more fully in Sections 3.2 and 3.3

In section3, we willdiscusstheseoptions in some detail.To anticipatethe conclusionof this

discussion,we willargue thatstrongguaranteesareimportantinmost process-groupbased software.

Lacking them, a system willbe incapableofsupportingimportant classesof applications.On the

other hand, we willalsosuggestthat unsophisticateduserscan (and should)be presentedwith a

defaultform of multicastwith very simplesemantics.The idea isthatnaive usersshould employ

a multicastprimitivethatislikelyto behave as they would expect,whilesophisticatedusersand

Sln this paper, we consider only asynchronous systems, in which any timing constraints or deadlines are weak with

respect to communication performance. Realtime communic&tiou protoco l., such as the ones described in [CASD85],

impose stringent timing requirements upon the operating system and frequently obtxin determinism by introducing

del&ys and idle periods. Few current Im &pplications need deadlines or priorities, hence we h&ve chosen to concentrate

on _logicxl" properties, such at delivery ordering and &tomicity, in this paper.

IWe use the term addreu ezpunaion to refer to the phase of a multicast during which the system determines the

group members to which a message will be delivered.

S_w

Clk_2 Cliem I

S_

b

Clie_ 2

Figure 1: (&) Unordered group communication; (b) Synchronous group communic&tion.

subsystems will need flexibility to achieve the highest possible performance.

2.5 Why not layer group communication over RPC?

A frequently-asked question concerns whether group communic&tion should be implemented over

RPC. Many current oper&ting systems are RPC-based, and this protocol is often highly optimized

and well supported. For this reason, if a user were to implement a multicast protocol at the

application layer, this would have to be done over either RPC, a stremn protocol such as TCP

(which makes little sense), s or a d&ta_rmm protocol such as UDP which, because it is unreliable and

infrequently used, poses many practical obstacles, e Moreover, many styles of group communication

are essentially generalizations of RPC, and many of the techniques used to support RPC caxry over

to group multicast protocols. Thus, it may seem natural to layer protocols such as group multicast

over RPC, and to _.ase the skids _ so that RPC will be as fast as possible.

In principle, on,, could build a reliable multicast protocol over an RPC transport, and a group

mechanism over thismulticast.Given transactionalRPC [LS83,SpeS5],such a multicastcould

SThe problem with implementin| multicut over TCP is that TCP b optimised for continuous, stream-style

tramnniuion of lazp quantities of da_ from one source to one destination. The protocol is mismatched with a burst,

one-to-many communicstion l_t_rn - a criticism that would not apply to RPC. The same comments apply to X.25,

the OSI stream protocol.
S RPC protocols automatically deal with messase loss and retransmiBion, frw|mentation of I_rge packets into sm

ones, etc. All of these problem would hLve to be addressed by hand in • protocol layered over UDP, or the equiv_dent

OSI d&txgram protocol.

be made atomic, with parallel threads (lightweight processes) doing RPCs to deliver the messages,

and using a two-phase commit to ensure atomicity. Of course, such a solution would also need

to address the concerns of the remainder of this paper: multicast ordering, synchronization of

multicast address expansion with group membership changes, etc. A protocol with predictable

behavior in all of these respects would be no simpler over RPC than any other technology. The

question, therefore, is one of performance.

Of special interest to us are applications that use asynchronous group communication to achieve

high performance. Communication is synchronous if it follows a request-reply style, whereby the

thread that sends a message blocks waiting for the reply. Asynchronous communication arises when

the sending thread does not block and no reply message is sent. Although underlying message

transport layers still need to exchange acknowledgement and flow-control messages, these impose

little overhead and do not delay the higher-level protocols, or require further synchronization in

the application.

Asynchronous communication has an obvious performance benefit if no replies are needed from the

destination processes. This benefit becomes a necessity when the number of destinations grows

large, because of the cost of collecting superfluous replies at the requester. Implementing an

asynchronous multicast communicstion protocol over an KPC layer would cause severe congestion

at the sender. A second factor is that mnlticast hardware would be very difficult to exploit from

an RPC-based implementation. A third concern would be the potentially large amount of memory

needed for the stacks of the threads associated with pending multicasts on the sender side: as many

as one thread per destination per multicast.

Thus we conclude:

• Group membership management and group communication are commonly used services that

should be implemented once, in a common shared subsystem.

• Multicast should be implemented over asynchronous message passing or transport-level mul-

ticast.

2.6 Does multicast belong inside the operating system?

There remains the question of whether multicast support should exist in the operating system or in

a shared user-space library. The key issue, again, is performance. For good performance multicast

should implemented "near the wire"; in other words, the latency of network device interrupts should

be minimized.

Tofully justify this claim we would need to review the protocols that have been offered in support of

group multicast, an exercise that would exceed the scope of this paper. Briefly, though, any protocol

for group multicast will involve delaying some messages and exchanging background messages of

one sort or another. It follows that if all protocol messages must reach the user's address space, an

expensive cross-address space call will have to be done (perhaps even a scheduling action end severa_

context switches) just to deliver a message that might not trigger execution of any application-

related code. The cost savings of putting at least the core functionality of the multicast mechanism

in the operating system can thus be substantial.

Experimental work that has placed some form of multicast directly in the operating system shows

that startling performance gains are attainable using this approach [DC90, KT91, PBS89]. These

systems are u much as 25 times faster than the current UNIX-ba_,d Isis implementation, despite

the fact that multicasts in this version of Isis substantially outperform other UNIX-based multica-_t

protocols with which we are familiar [BSS91].

On the other hand, multicast will not be needed by every operating system user, so we should

not require nor expect every operating system to provide it. Thus we are attracted by modular

operating systems [AGHR89, Ras86] in which & small kernel and a collection of operating system

modules communicate using fast inter-module calls. In this way, group and multicast support can

be provided in & separate, optional operating system module.

We conclude that where possible (and notably in modular oper&ting systems) group end multicast

should be provided in a separate operating system module.

3 Detailed design choices for a single group

The goal of this section is to explore, in detail, the choices for group and multicast semantics within

a single group. Section 4 explores issues raised when multiple groups co-exist in a single application.

3.1 Group structure: Members and clients

In Section 2.3 it was suggested that processes outside a group will often need to interact with the

group as a single entity. F_om experience with Isis users, we have identified four group "structures"

that frequently arise in Isis programs (Fig. 2). Each responds to a different programming need.

A peer group is composed of a set of members that cooperate closely. Fault-tolerance and load-

sharing are dominant considerations in these groups, which are typically small. In a client-ser_'er

10

(a) Peer Group (b) Client-Server Group (c) Diffusion Group (d) Hierarchical Group

Figure 2: Common group structures

group, a potentially large number of clients interacts with a peer group of servers. Requests may be

multicast or issued as RPCs to some favored server after an initial setup. The servers either respond

to requests using point-to-point messages, or use mnlticast to atomically reply to the client while

also sending copies to one-another. The latter approach is useful for fault-tolerance: if a primary

server fails, multicast &tomicity implies that a backup server will receive a copy if (and only if) the

client did. Thus, & backup server will know which requests are still pending.

A special case of client-server communication arises in the dillon group, which supports diffusion

multicasts. Here, a single message is sent by a server to the full set of clients and servers. In current

Isis applications, diffusion groups are the only situations in which a typical multicast has a large

number of destinations. The use of multicast hardware to optimize this case is thus attractive.

These throe ca_es are easily distinguished at runtime in Isis. The only explicit actions by the

programmer are to register as & member (using the pg.join system call) or client (pg_client), and

Co designate diffusion multicasts using an option to the Isis multicast system call. A single group

may operate in both client-server modes simultaneously.

The last common group structure is the hierarchical group. In large applications with a need for

sharing, it is important to localize interactions within smaller dusters of components. This leads

to an approar.h in which a conceptually large group is implemented as a collection of subgroups.

rn cllent-server applications with hierarchical server groups, the client is bound, transparently, to

a subgroup that accepts requests on its behalf. A root group is responsible for performing this

mapping, which is done using & stub linked into the client's address space that routes messages

to the appropriate subgroup. The root group sets up this binding when & process becomes a

group client, and may later re-bind the client to & different subgroup. Group data is partitioned

so that only one subgroup holds the primal/copy of any data item, with others either directing

operations to the appropriate subgroup or maintaining cached copies. Multicast to the full set of

group members is supported, but but its use is discouraged in this architecture.

ll

For brevity, weomit detaileddiscussionof one-timeclient-serverinteractions,and groupsused

only to monitor membership, but never for communication. Both merit special treatment in an

implementation. For example, a large membership-only group should be supported as a client-

server structure, minimizing the number of processes informed on each membership change. The

servers would be informed of monitoring requests and would only communicate with a client when

a monitor is triggered.

Explicit support for these group structures is important for performance and scaling. Clients are

more numerous than members, but clients of a group never communicate with each other via that

group. This fa_t can be exploited to reduce the amount of information maintained per-client, and

permits clients to be omitted from most group coordination protocols. If clients are treated as fully

fledged group members (as required in most group-based systems) then groups may not provide

sufficient performance for many applications.

3.2 Atomicity

In Section 2, we suggested a need for multicast primitives supporting strong semantics. In this

section, we begin a more detailed examination of the options by looking at the question of atom-

icity. As stated earlier, a process group system may support two forms of atomicity: membership

atomicity and failure atomicity. The first provides the illusion of group membership that changes

instantaneously as members join, leave or fail. The second ensures that multicasts interrupted by

a crash will be transparently terminated. Isis supports both properties, and these have proved

important to users of the system.

Consider first the atomicity of group join/leave/fail. It is difficult to program with process groups in

which the expansion of a multicast address from a group address to a list of members is not atomic

(i.e. there is no guarantee concerning exactly which processes received a particular multicast, as

illustrated in Fig. 3.a). In Isis, this is guaranteed to be the complete membership of the group.

defined at a logical instant when delivery occurs (Fig. 3.b).

Similar comments apply to failure atomicity. Process group algorithms are greatly simplified by

the ability to send a multicast without the concern that an unlikely event, such as a crash, will

result in partial delivery. When a group member fails, Isis further guarantees that other processes

will receive the failure notification only after having received all outstanding messages from the

failed process, and that failures leave no gaps in the causal message history. These properties

eliminate bizarre failure sequences, such as the delivery of a message from a process after system

state maintained for that process has been garbage collected.

12

Client

Servw

New Memb_

Sw_

NonoaumnicJoin Aza_¢ Join_th ShareTnmsfa

Figure 3: (a) A non-atomic join (b) Atomic join.

Although some systems, notably the V-System, have developed applications using non-atomic group

semantics, the primary use seems to be in name services that use m-lticast for service location. In

this context, the consequences of a missed reply or an inaccurate membership protocol are simply

an occasional loss of performance.

Isis tools and applications build other forms of atomicity on top of the membership and failure

atomicity semantics of groups. For example, the Isis state transfer tool copies data from an existing

group member to a joining process. (The application designer determines what the state should

include.) State transfer is a key to supporting groups with consistent distributed state. However, it

is important that the state transferred correspond to the programmer's notion of group state at the

(logical) instant of the join. Obtaining this property requires that state transfer be synchronized

with the reception of messages that might change the state. Specifically, all messages sent to the

group before the new member was a_lded must be delivered before the state is sent. Messages

delivered to the group after this event must include the new member. Finally, the event by which

the old and new members are informed of the membership change (through a callback) must be

coordinated to occur at the same point in the execution of each. We believe that, in the absence of

strong atomicity properties, it would be impossible to define (much less implement) state transfer.

Membership atomicity is useful for another reason: it gives process group members implicit kno_,l-

edge about one-another's states. This permits each group member to use the same deterministic

13

function for choosingthe prima.,7site in a data replication algorithm, or for subdividing work

in a parallel computation, for example. Because of membership atomicity, this function operates

only on local data (the synchronized group membership llst) but achieves group-wide consistency.

Several Isis tools are driven by atomic group membership changes, making no use of any other

communication between group members.

We conclude that in systems like Isis, membership atomicity and failure atomicity are both needed.

3.3 Causal and total multlcast orderings

In Section 2.4, we observed that there are many possible multicast delivery ordering guarantees.

This section focuses on the choice between causal and total ordering in a single group, while the

following sections examine multicast ordering in systems with large numbers of possibly overlapping

process groups.

Although Isis supports a number of mu]tlcast ordering alternatives, application builders are pri-

marUy concerned with two of these, cbcast and abcast. The cbcast protocol delivers messages in

the order they were sent, (the osm_/or happen# before order that is natural in distributed systems

[Lam78]). For example, in Fig. 1.b, multicut a causally precedes multicuts b and ¢, but b and ¢

are concurrent. Cbcast would therefore deliver a before b or c, at all destinations but the relative

delivery order used for b and c would be unconstrained and might vary from process to process.

That ebcut does not order concurrent multica_ts is not necessarily a drawback. Often, application-

level synchronization or scheduling mechanisms are used to serialize conflicting operations: further

serialization of multicasts is superfluous. Cbeast is attractive in such cases, because there is no

built-in delay assoc_ted with the algorithm. In fact cbcast never delays a message unless it arrives

out of order.

The abcast protocol delivers meseages to group members in a single mutually observed order.

R_.ferring to Fig. 1.b, this implies that processes sx, s2 and _ would receive multicasts a, b and

c in the same order. This extra ordering comes at a significant cost: any abcast protocol delays

some (or all) messages during the period when this order is being determined. For example, in one

common implementation of abcast, recipients of a message wait for an order/ng message from a

distinguished sequencer process. The nature of the delay varies from protocol to protocol, but the

presence of a delay of this sort is intrinsic to the abcast ordering property.

14

The performance implications of using abcast instead of ebcast •

The extra delay with abcast can lengthen the critical path of a distributed computation. In

a common usage of multicast, a process m_ulticasts _n operation to a group the. includes itseK,

and upon receiving its own multicast performs the operation. By acting on the 0p_ation after

it has received its own multicast the process is certain that it is performing the opet, a tion in an

order consistent with the other members of its group, and that the other members _Kuaranteed

to receive the multicast and could take over the operation should this process fxJL_(because of

failure atom]city). Where abcast is used, the sending process may not xct on the message until

a total ordering for delivering it has been decided. Unless the sender is also the sequencer (which

is not generally the case) this delay will involve a remote communication. In contrast a cbcast

implementation need never delay delivery of the message at the sending process, and in general

delivery at one destination is never delayed because of slow response at another destination. In

this sense, a cbcast implement&tion czn be optimal.

Schmuck has shown that distributed .algorithms can be built primarily from cbcast [Sch88, BJ89].

This is done by demonstrating that most algorithms can be recoded in a style that enforces mutual

exclusion between conflicting operations, for which cbcast suffices.

In Isis, this transformation is used extensively for performance reasons: the abcast-based al-

gorithms may be simpler to understand, but axe often much slower. In paxticulax, the latency

between transmission and delivery of an_cbcast is at least a factor of two smaller than for abcast.

Moreover, at the sender, the difference can be a factor of one hundred or more. The problem is that

if the sender needs a copy of its own message, in the same order as the other group members will

see it (i.e. for a replic&ted update), abcast will block while cbcast can be used without blocking.

This is because abcast has to deal with the case where two senders concurrently communicate to

the same group. Even if this is uncommon, abcast cannot deliver the message to any destination

until it is known to be the _next" one, and this requires some communication with other potential

senders; In contrast, cbcast can be delivered immediately at the sender.

Distributed systems, and indeed computing systems of all sorts, axe notoriously bursty: often there

will be very few active threads. By blocking the sender of a multicast, abcast may delay one of

the only things going on in the entire system! Thus, in applications where the sender of a multica_t

is also a destination, the benefit of using cbcast instead of abcast can be dramatic.

To summarize, we have identified a two-level issue. First, asynchronous systems axe likely to

outperform synchronous systems by a substantial factor (in the current version of Isis, as much

as one to two orders of magnitude). Second, given a system that uses multicast communication,

the cbcast delivery ordering property will be substantially cheaper to provide then the abcast

15

C, i:Cti_L PAGE !S

OF _0,0_, (_.&L.J'iS

property, and this is true regardless of whether the sender uses the protocol synchronously or

asynchronously.

The pervasiveness oi" causality obligat|ons

Abcast may seem strictly stronger (more ordered) tha_ cbeast, since concurrent multicasts are

ordered. However, abcut, in most definitions, is _tually not required to use _n order consistent

with causality. Consider a process that sends two asynchronous abcast mess_es. It would be

normal to expect that these be delivered in the order sent, _nd most abcast protocols h&ve this

property in the absence of failures. However such &non-causal (or "mostly causal") abcast should

not be used asynchronously because it does not guarantee this property. For these reasons we

believe that abcast should support both a total and a causal order. Such a causal abeast protocol

can be built over cbcast [BSS91]. T

In discussing the option of building multicast over RPC, we stressed the need for asynchronous

communication, and in the discussion of the previous section reiterated this issue. Indeed, delay is

often the most serious threat to performance in distributed systems. Delays aze especially &pparent

in applications that maintain replicated data using read and write operations, with a locking or

token passing scheme used to avoid conflicts. Any delay when doing & read or write operation may

be visible to the user of such an application. On the other h_nd, the latency before all replicas

are updated is invisible unless it impacts on read or write response times, or on avauabdity. Using

a causally consistent communication protocol, one can code completely asynchronous replicated

data management algorithms_regardless of whether that protocol is abcast or cbcast. The user

programs as if updates were synchronous, and the caus&l ordering property, combined with failure

atomicity, ensure that the execution respects this logical property [BJ87, B J89, Sch88, LLS90].

Equally, a protocol that mi_t violate causality is unsafe for asynchronous use, even if it still

provides a total order. Unless causal obligations are observed, the initiator of an operation must

walt until completion of the operation is acknowledged before proceeding. Otherwise the total order

might enforce an arbitrary serialization that violates causality.

By the same reasoning, it must be possible for point-to-point communication in a process group

TThole fam/Iinzwith the previous _ work will wonder where the flbcMt protocol fits into this. In the origina/

versions of Is/s, abcsst mad cbeamt were completely unordered with respect to each other. Gbcmst wu totMly ordered

with respect to both abcut and cbcamt, and was needed to implement group membership atomicity. However, some

applications also used the protocol. The equivalent of ftbcut is still present within the group join mechanism, and

is implemented using a cbcsst that triuers a group flush prior to deliver. However, we have determined that Isis

users who employed gbcut at the application level generally could have obt_dned the same e_ect using a causally

ordered abe.mat, and that siren this primitive, gbcast can be viewed u z purely interns/mechanism. This simplifies

groups u seen by users.

16

settingto convey the causality obligations. For instance in a computation spanning two processes,

one process may initiate an asynchronous multicast, and then send an RPC to the other process,

which initiates a second asynchronous multicast. The second multicast should causally follow the

first. In Isis a point-to-point ©beast achieves this effect.

Message stability

The use of asynchronous communication raises an additional problem of message stability. A

message is said to be k-stable if its delivery is assured provided that no more than k failures occur,

and is stable (where /_ is omitted) if delivery is certain to occur. For example, suppose that a

process, Pt, sends multicast a to processes P2 and P3. Process P2 receives a and sends multicast b

to/_. If a was not stable at the time of its delivery to p_, the failure of Pz might prevent a from

(ever) being delivered to P3. This represents a form of communication deadlock, since messages

from _ to _ wUl now be delayed indefinitely. A related issue arises if process P2 takes an externally

visible action based on the reception of a. Here, it may be that P2 should delay the action until a

and its causal predecessors are stable, since failures might otherwise create a situation in which an

irreversible action was taken but no operational process in the system realizes this.

Although these problems can be avoided by delaying delivery of a message until it and ai/of its

causal antecedents are stable, this introduces a tradeoffbetween the levels of performance and safety

needed in the application. We favor allowing .messages to be delivered before they become stable,

and providing a per-group pg_flush operation that delays the caller until stability is achieved for

any asynchronous messages pending in the group, and for their causal predecessors. We are a/so

considering & system call to specify the stability parameter /c for & given group. An analogous

problem arises in file systems, when output to a disk is cached or buffered, and is typically solved

in s similax way by providing s system call such as the Unix fsync operation.

Summary

To summa_'_ze the ar_ments in this section:

• Asynchronous operations are the single most importaat factor in obtaining good performance

in distributed systems, regardiess of the underlying communication primitive.

• Asynchronous operations create causal delivery obligations, hence group communication should

respect causality.

17

• Cbeut is usedto implementcausalabeast, henceit shouldbe the corecommunication

protocolin our processgrouparchitecture.

s (Causal) abcast is slower than cbcut and should be avoided by sophisticated users. Less

sophisticated users find abcast easier to understand sad should avoid cbcnst.

• The message stability problem closely resembles the problem of flushing file system I/O

buffers, and is readily addressed by providing a user-cai/able flush primitive.

4 Ordering properties that span group boundaries

The Isls system is notable for enforcing multicast ordering properties across group boundaries.

Here we re-evaluate the usefulness of these semantics, while considering their cost and complexity.

4.1 Who uses overlapping groups?

Many Isis applications employ multiple, overlapping groups. In object-oriented applications group

overlap is often carried to an extreme. Here, each program is typically composed of some set of

objects, and any object that maintains distributed state is implemented by a group. A single

process may thus belong to many groups. Large numbers of groups also arise when Isis is used

for transparent fault-tolerance in the process pair style [Bar81], with a shadow process backing

up each real process. Here, each communication entity in the system is represented by a group

containing two members: a primary and a backup. Some Isis applications superimpose multiple

groups on the same set of processes. For example, in a stock trading application, a service that

computes bid/offered prices for a stock (a diffusion group) might also provide historical information

on demand (a request-reply interaction). Moreover, individual processes within the server set may

well subscribe to other services.

4.2 Should causality be preserved between groups?

Consider a graphics application that uses a blackboard object, conta_Ling the scene model, and a

task-queue object, specifying views to be rendered (see Figure 4). Both objects allow asynchronous

updates. A typical execution sequence involves posting data about a problem on the blackboard and

then adding new tasks to the task list. Idle servers remove these tasks and consult the blackboard

for scene data.

18

lh_rsmI l_o_,m2

A_ync.
0

T_ (_)

®

Pl_lmm2 W

Figure 4: Application using a blackboard and a task-bag.

For fault tolerance or performance reasons, the blackboard and the task bag might both be imple-

mented as process groups. Let us call the blackboard group B and the task bag group T. Group

B has some number of members, and at least two clients: Progr_n_ 1 (pl) and Program 2 (p2).

Similarly, group T has pl and p2 as clients. Thus, these two groups overlap at pl and p2.

For correct behavior, it is essential that when server p2 consults the blackboard (step 4 in Figure

4), it finds the data that pl posted before putting p_'s task in the task bag. There are two ways

this could be accomplished:

• Make pl wait at step 1 until it receives an acknowledgement from group B, indicating that

the parameters have been posted, before adding the task to the task bag, or

. Make p2 wait at step 4 if the blackboard update from step 1 is not yet complete.

These two solutions perform very differently. It is highly unlikely that the blackboard update will

not be complete at the time p2 executes step 4. The first solution delays pl every time it posts

data to the blackboard, just to cover the unlikely case. The second solution only delays execution

of p_ when absolutely necessary, _nd never delays pl (except possibly for flow control reasons).

19

Group A Group B Group C

Figure 5: A causal chain spanning multiple _oups

Of course, to implement the second solution, there must be some way to recognize that the message

sent by p2 at step 4 causally follows the message sent by p! at step 1. This causality obligation in

group B must somehow be propagated through the task bag (group T).

In general, cbcast is used to ensure that sequences of causMly related message events are processed

in order. Where overlapping groups are concerned, the question is whether causal ordering should

be enforced when a chain of events leaves some group, spans other groups, and then some operation

reenters the original group. This situation is schematicMly depicted in Figure 5. Here, the conflict

axises within a aingle group, between the original operation and a later, causally dependent one. In

a sense, each chain of causally related events represents an execution sequence, similar to a thread

of control, that must be honored. Our belief in an asynchronous style of computation argues that

causality should be preserved here.

4.3 Should causality always be preserved between groups?

Suppose that the author of our graphics task bag and blackboard application decides to include

a debugging facility. This debugger should be able to halt execution of the entire application,

then provide the user with facilities for probing the state of each of the applic&tion's processes.

Suspending execution could be done with an asynchronous multicast to a group containing all

the processes to be debugged. The debugging process could then communicate with the various

application processes via RPC--invoking special state reporting code in each process.

2O

Supposethat the new debugger is invoked in the situation described in the previous section. Exe-

cution is halted just before server p$ consults the blackboard (step 4 in Figure 4.) Suppose further

that server p1's asynchronous blackboard update (step 1 in Figure 4) has not yet been posted.

If interactions with the debugger respect causality, the debugger is now in a very difficult position.

If it interrogates the state of server pl or p_, or the task bag, it will lose its ability to interact

with the blackboard. The problem is that when the debugger receives a message (e.g. an RPC

reply) from pl, p_ or the task bag, the debugger's execution becomes causally dependent on pI's

asynchronous blackboard update (step 1 in Figure 5). Thus, messages from the debugger to the

blackboard are constrained to be delivered after the message in step 1 is delivered. Since normal

execution of the blackboard has been halted, neither message can be delivered.

(Note that it was possible for the debugger to halt execution as described because the debugger's

first message is not causally related to any activity in the debugged processes. Thus, the debugger's

halt message can be delivered to the blackboard before pl's update message, without violating

causaJJty.)

Clearly, it would be preferable if messages between the debugger sad the debugged processes were

completely unrelated to the messages between the debugged processes.

Other circumstances where it seems inappropriate to preserve causality between groups include:

• Performance Monitoring. The issues here are identical to those associated with debugging.

• Out-of-bsad Communication. cbcut is a generalization of FIFO message ordering: it pre-

vents "out-of-band" communication.

• Background "bookkeeping" algorithms, such as garbage collection, deadlock detection, and

orphan detection.

There is a more general way to look at these examples. Consider a program built of multiple

independent sulmystemJ. Each of these subsystems might be composed of several objects, repre-

sented by process groups, between which causality should be preserved. Yet, the subsystems may

be completely independent of each other, sad in some settings (e.g. when an applications combines

several subsystems that run at different priorities), the potential delays introduced by the need to

enforce inter-group causality would be inappropriate.

In the examples above, the debugging and monitoring parts of the application are subsystems

that must run at higher priority than the basic graphics application, while bookkeeping operations

typically run at a lower priority.

21

4.4 How visible should causality information be?

The examples above argue that the application programmer must have some control over the

propagation of causality information. What form should this control take? What granularity of

control is required?

Other researchers,such as Peterson [PBS89] and Ladin [LLSg0],have proposed schemes in which

usersplay a directrolein maintaining,transmittingand reasoningabout causalityinformation.

Such approaches allowa sophisticateduser---ora clevercompiler--toexploitapplicationsemantics

inaccessibleto the runtime subsystem.

Our approach, in contrast, is motivated by the observation that naive programmers expect causal

order to be respected as a matter of course. Indeed, some Isis users employ asynchronous com-

munication without really understanding the causality issue at all. The decision to respect causal

order means that such users will be able to develop correct code; a decision not to respect causality

would have exposed subtle race conditions. Further, we have observed that although requirements

for breaking causal order do arise, they are often related to the existence of sophisticated, indepen-

dently developed, subsystems.

This leads us to favor a declarative approach in which explicit action must be taken to prevent the

system from enforcing causal ordering. Our proposal is that groups be created in a specific causalit_/

domain. If the domain is not specified, a standard "default" domain would be used. Causality is

observed only between groups in the same domain. A causality domain resembles a Psync session

[PBS89], but may contain multiple, overlapping process groups. Naive developers would accept this

default; thus placing the groups in their applications into a single causality domain. Sophisticated

users---such as the author of the debugging package for our task and blackboard graphics application

above--would take explicit action to ensure that debugging communication occurs in a separate

causality domain.

Our emphasis is thus on simplicity of use--at the possible expense of concurrency. We prefer to

enforce the occasional spurious causal ordering, rather than requiring that all programmers decide

which causal information should be propagated where.

The presentation of causality information points to the broader question of how process groups

should be presented within programming languages and object oriented environments. Systematic

study of these issues will be needed if process groups are to become a common and widely used

programming tool. One of us (Cooper) is currently examining these issues in the context of a

distributed variant of Concurrent ML [Repg0].

22

4.5 Should abcast be ordered between groups?

The total orderachievedby abcast is usedto seriMizeindependentrequeststo a process group,

providing a simple form of mutual exclusion or concurrency control. When groups represent distinct

objects, there is generally no need for abcast ordering to be observed at group overlaps (i.e. when

two or more objects reside at the satne process). Rather, ea_ object is responsible for its own

concurrency control (e.g. to maintain one-copy semantics for replicated data), and the object im-

plementations are usually separate and non-interfering. In these cases a single-group abcast will

ensure serializability, while the causality semantics of abcast will ensure that the relative ordering

of requests at different objects is observed.

However these assumptions, while common, do not always hold. An object could be known by

more than one group address, or there may be no direct mapping between groups and objects. One

example would be overlapping diffusion groups (see Section 2.4) consisting of the same set of server

processes, and intersecting sets of clients. One can imagine applications in which abcasts from the

servers should be ordered totally at the overlapping client sets.

For an abstract example, consider a distributed form of the dining philesopher's problem. For each

phi]oeopher there is a proceu group that includes the pair of forks to use. One might use abcasts to

atomically claim or relearn the forks for a given philosopher. Notice that no two processes (forks)

receive the same pair of multicasts. Yet, abcast ordering is important here, because if abcast

is not globally ordered, a cyclic request ordering could arise that would cause a deadlock. This

example highlights a subtlety with multiple group abcast semantics. There are two reasonable

generalizations of single group ordering. In the first, two concurrent abcuts, one to each of two

overlapping groups, are ordered totally, but only at the processes in the intersection of the groups.

In the second, stronger, definition about delivery is globally ordered. The first definition permits

cycles in abcast delivery orderings; the second does not [GT90].

While we can create abstract examples to motivate multiple group abcast ordering, we have yet

to see practical situations where this kind of ordering is necessary. Farther, protocols that provide

global order are more costly than protocols that are ordered only within a single group: in the

current Isis protocols, &causal, locally ordered abcast is more than twice as fast as the best causal,

globally ordered abcast protocol we conld devise. This perhaps argues for a notion of ordering

dornaina, analogous to causality domains. For example, one might provide a global abcast order

within the subgroups of a hierarchical group, but not between two "unrelated" groups. However, we

axe unconvinced that ordering domains would see much use. For the moment, we are implementing

single group abcast semantics and will reevaluate this decision in the light of further experience.

To summarize:

23

In mostcases,causaiJty should be preserved when a communication chain leaves and re-enters

a group.

Causality domains allow the scope of causality obligations to be restricted, in particular for

applications with subsystems that must not interfere with one another.

The abcast ordering is normMly not needed when multicasts to two different groups happen

to overlap. An exception arises when the two groups arim in a single object. Were this

common, it would argue for ¬ion of ordering domain similar to the one for causality.

5 Extended example: Causal process pairs

To better justify our assertions, we now present a procees-pair scheme for fault tolerance designed

to be as eft]dent as possible within our architecture. The example illustrates several points. First,

essentially all the issues discussed above arise, and the choices favored in the previous sections lead

to simple solutions. Second, the Imrformance of the overall fault-tolermace solution would be quite

good - theoretically, as good or better than any previou_y known solution (we recognize that untLl

we complete a full implementation ud compare it directly to an implementation of some other

method, this clkim lacks the force of an experimental result). Finally, the example demonstrates

that our architectu_ permits an obvions and important problem to be addressed in an elegant way

using general primitives, suggesting that hand-crafted solutions to these sorts of problems are not

necessarily preferable to solutions layered over a more standard subsystem.

We are given a system cornering of processes {P, O, ...} that couuaicate by sendlng point-go-

point messages, and we wish to make some of these processes tolerant to single crash failures in a

manner that is as transpmmnt as possible to the programmer. This problem has been explored by

many researchers and companies [Bar81, BBG+89, SY85, JZ87].

The basic ide_ of process pairs is to maintain a backup proceu for ench primary proceu that we

wish to make fault tolerant. The backup process keeps itself synchronized with the primary by

keeping a checkpoint of the state of the primary, duplicates of any requests sent to the primary

subsequent to the checkpoint, and enough supplemental data to overcome non-determinism in the

execution.

For each primary process, P, let P_ denote its backup. As illustrated in Figure 6, a process P will

send a request r to the process pair (Q,Qt) by first sending a trace message m to its backup, and

then sending the request, r, using a multicast to the pair (Q, Q'). More specifically:

24

P

.s.

p" Q Q"

P ,t D

r

P Q

.

*

Figure 6: Transparent fault-tolerance using causal process-groupL

Message m will be sent by P to/_, and will contain sufficient tr_e information to enable

P_ to reproduce the execution of P up the this point. In the cam where P is completely

deterministic, m might be empty (in which case the action of sendin 8 it can be omitted).

Otherwise, it would contain information about the order in which P received and processed

requests, the order in which its threads were scheduled, and other sorts of information needed

to resolve non-determinism in the execution. If desired, this message can also contain a

complete checkpoint of the state of P, and indeed it may be desirable to periodically make

such a checkpoint to ensure that recovery from failure will incur little delay.

Message r, which is causally ordered after m, contains the request that P is issuing to Q. P

will send r using an atomic causal multicut to the group (Q, Q').

The reply from _ to P is treated in the same manner: the scheme is completely symmetrical with

respect to clients and servers.

The trace messap, m, from P to P' indicates the order in which P removed requests from its

input queue because P may receive multiple concurrent requests, s_y from .q and $. Although

these messages will also be sent to P_, unless the order of delivery is the same at P and P', P' will

not know the order in which P processed them. This information can be omitted from the trace

message if & totally ordered multicast is used for all requests. The same discussion applies to the

trace message m' sent by O to Q'.

25

To recoverfrom the failure of P, process p0 win, upon observing the failure event, reconstruct

the state that P was in by loading the most recent checkpoint and simulating the computation

performed by P. This may cause P to send duplicate messages to Q, which should detect and

discard them (since p! behaves exactly the way that P behaved prior to fai/ing, this can be done

by numbering messages consecutively).

This scheme introduces two kinds of overhead not present in the original computation: extra

messages (between P and P_ and between Q and Q0), and delay ah)ng the critical path of the

computationmwhen failure is rare, this would be the interactions between primaries.

The arguments made in Section 2.4, favoring asynchronous, causally ordered communication, apply

here. By using causal communication throughout, there will never be any need to _!/a .ze88_e

the c_tical path (the transmission of r from P to Q) because of the messages sent to the backup

processes (the transmission of m to P_ and the copy of r sent to _0; messages m _ and the copy of

r I sent to .De _ not on the critical path). Given adequate background capacity to send these trace

messages and remote (or "backup") messages, the fault-tolerant version of a computation might

actually execute at the same speed as the ori_al onel Moreover, although trace messages and

messages to the backup processes do consume bandwidth, they can be delayed and sent in batches,

thus pipelining communk_ion and achieving higher efRciency. Although the details will depend

on the protocol used, in many situations, the exCm messages sent will not impact the performance

of the application, provided of course that transmission of messages to backupe does not cause

congestion at the communication interface.

The st&bility property explained earlier is important, because it dellnes the limits of allowable

asynchrony beyond which sal'ety could be compromised. Specifically, if mu/ticast a causally precedes

multicast b and some process that receives b remains operational, a system that implements causal

ordering must ensure that a is eventually delivered to all of its destinations (except those that fa_l).

In our application, there k no real]hnit to the extent to which primaries can run "ahead _ of the

backups, except for the requirement that this safety condition be maintained.

If we represent e_Ja process pair (Q,Q_) as a process group with two members, this example

i]lustr&tes the need to preserve causality across the boundaries of process groups. To see this,

consider when P sends & trace message m to pt and then sends some request r to (Q, Q_). Message

m causally precedes r, but they are not sent in a single process group. But, if P now fails, we need to

know that if r does get delivered, m will also be delivered. Thus, causality across group boundaries

prevents & serious potential bug. The example also illustr&tes the need to communicate to a group

from outside it; here, in fact, most communication is ori_uated by external "clients" of the group.

Finally, notice that the synchronization of group membership with respect to communication would

be needed if one wished to create a new backup after failure of the primary.

26

Althoughwewill notdevelop the details here, it is interesting to note that the the scheme described

above is nearly identical to the Tandem process-pair implementation, with the exception of the

asynchrony afforded by the causal ordering property. However, our description is more genera/; for

example, it extends without modification to the case of k backups, while the Tandem work is very

much tied to the assumption that k - 1.

Our scheme is also similar to that used in Targon/32 [BBG+89], but usa only a two-way causal

multicast, rather than the three-way totally ordered multicast (about) they require. Using abeast

rather than ebcast for transmission of requests, would eliminate many of the trace messages, but

has the potentially serious disadvantage of delaying delivery of messages to the primary, introducing

latency on the critical path but simplifying recovery after a failure. This argues in favor of cbcast

for traasmitting requests to a process pair. s

6 An implementation

Many of the foregoing observffitions and conclusions have been driven not just by usage of the Isis

system, but by lessons learned from its implementation. So, while this paper is primarily about the

semantics of group-based systems, it is dearly important that the methods we propose correspond

to an efficiently implement•hie system architecture. In fact, our group is presently engaged on the

design and implementation of & successor to Isis, called Horus, that will employ the experience

gained from the initial system and the observations made above to achieve substantially increased

flexibility and performance. Our basic approach is to separate Isis into two parts, one of which

would be linked into the application address space, and one residing in the operating system.

The operating system module can be made extremely spare, implementing & bare minimum of

functionality: virtually synchronous process groups, causal domains, cbeut and abe•st - the core

functions identified in the discussion above. The remainder of the Isis model and the Toolkit itself

would be realized at the library level It would be beyond the scope of this paper, and somewhat

premature, to discuss the design of Horus in greater detail. Completion of a prototype is expected

in late 1992, at which time we plan to fonow up on the present paper with one giving details and

performance.

sResdem familiar with the a_rithm in [BSSgl] win _ that, uadez this a_orithm, the approaches might

actually have identical casts. The implementation of (causal) abe•st in that paper uses • token holder to decide

deliver/ordering, ud messages are never delayed at the tokea holds. If the primary member of a process pair is

always used u token holder, _- would be likely in an implementation of the approach under Iris, the flow of messages

resultin s from traasmismon of requests to the pair mdn s abe•st is the same as would result when turins cbcut with

a trace message that informs the bsclmp of the order that was used.

27

7 Conclusions

Experience with real users can reshape one's perspective on a computer system. This has been the

case with the Isis system, which entered into wide academic and commercial use with generally

positive but sometimes surprising results. Our experiences support the belief that distributed

systems should implement process groups at & basic level.

The mechanisms underlying this support need not be as exhaustive as in the present Isis system,

which provides a bewildering variety of group membership and multicast ordering options to its

users. Our understanding of the system and its users has now reded a point where we can argue

that these be reduced to two mechanisms (atomic group membership and causal multicast) over

which the virtually synchronous toolkit can be rebuilt.

Our paper makes two types of contributions. The first of these is at the level of group structures,

particularly by refinement of the notion of group to address issues raised by having multiple groups,

groups with external clients, and groups of groups. Our approach _ that clients are more

numerous than servers, but that their communication patterns and use of group semantics are

restricted, and it organizes groups into causal domains. We expect these styles of client-server

groups to be durable because they &re directly based on uses observed in practice. Although new

group and multicast protocols are to be expected, these group structures should continue to present

programmers with the interface they actually need.

Our second major contribution is the argument that am_hrono_ communication, combined with

failure atomicity and catwal ordering, is faster than synchronous request-response communication,

and is sufficient for most communication needs. Although a total ordering is sometimes neces-

sary, such ordering imposes unavoidable delays and should be implemented on top of a causal

communication primitive.

Our new virtual synchrony architecture retains some of the complexity for which the original Isis

system can be criticized. We belleve that this is acceptable for two reasons. First, we see no way to

further simplify the system without breaking important properties. Additionally, the elegance of the

fault-tolerance transformation stands as evidence that the approach doe, result in simple solutions

to important distributed computing problems. Thus, although the rationale of the architecture

and the details of its implementation may continue to mystify non-experts, users of the system will

find these concerns unimportant because it substantially simplifies their work. Just as the obscure

details of register scheduling in an optimizing compiler or concurrency control in a database system

do not prevent us from using these technologies, we believe that programmers of the next generation

of distributed applications will leave the details of communication to the operating system - and

will be far more productive for having done so.

28

8 Acknowledgements

The material presented here was arrived at through discussions with many others. We thank MicaJa

Beck, Tusha_ Chandra, Rich Droves (CMU), Brad Glade, Keith Marzullo, Doug Orr (Chorus),

Franklin Reynolds (OSF), Mark Rozier (Chorus), Fred Schneider, P&t Stephenson, Robbert Van

ltenesse, and Mark Wood. Our architecture wu also influenced by the work of Franz Kaashok

(Vrije), Pffiulo Veduimo (INESC), and by the ANSA project. And we thank M&ureen Robinson

for producing the figures.

References

[AGHRS9]Francois Annand, Michel Glen, Fr_l_ic Herrmann, and Marc Rozier. Revolution 89 or

Distributing UNIX brings it back to its original virtues. Technical Report CS/TIt-89-

36.1, Chorus systtmes, 6 Avenue Gust&ve Eiffel, F-78182, $sint-Quentin-en-Yvelines,

France, August 1989.

[Bar81] Joel F. Bartlett. A NonStop kernel. In Pvoceedi_ of tl_ Eighth ACM $_,,mpomium on

Operati_ Sptema Pv/_'/p/_, pages 22-29, Padflc Grove, California, December 1981.

ACM SIGOPS.

[BBG+89] A. Borg, W. Blau, W. Gretsch, F. Herrmann, and W. Oberle. Panlt tolerance under

Unix. ACM Tm_tiona on Computer Sptems, 7(1):1-23, February 1989.

[BCg0] Kenneth Birman and Robert Cooper. The ISIS project: Real experience with a fault tol-

erant programming system. Technical Report TR90-1138, Cornell University Computer

Science Depaztment, Ithaca, NY, July 1990.

[Bir91] Kenneth Birman. The process-group approach to reli&ble distributed computing. Tech-

nical Report TR91-1216, Cornell University Computer Science Depa_-tment, Ithaca,

NY, July 1991. Submitted to Comm. ACM.

[BJ87] KennMk P. Birman and Thomas A. Jceeph. Reliable communication in the presence of

fa_um. ACM 7_nz_tions on Computer Spmtems, 5(:1):47-76, February 1987.

[n s9] Ken Birman and Thomu Joseph. Exploiting replication in distributed systems. In $ape

Mullender, editor, D/str/buted Systems, pages 319--368, New York, 1989. ACM Press,

Addison-Wesley.

[BSS91] Ken Birman, Andre $chiper, and Pat Stephenson. Lightweight causal and atomic group

multicast. A CM Tmv_octiov_ on Computer Systems, 9(3):272-314, August 1991.

29

[CASD85] Fl&viu Cristiu, Houtan Aghili,H. Ray Strong,and Danny Dolev. Atomic broadcast:

From simple message diffusionto Byzantine agreement. In Proceedingsof the Fifteenth

[nternational Symposium on Fault-Tolerant Computing, pages 200-206, Ann Arbor,

Michigan, June 1985. Institution of Electrical and Electronic Engineers. A revised

version appears as IBM Technical Report RJ5244.

[cz85] David Cheriton and Willy Zwaenepoel. Distributedprocessgroups in the V kernel.

A CM 23"ansaction#on Computer Syatenu,,3(2):77-107,May 1985.

[DC90] Stephen E. Deering and D&vid R. Cheriton. Multicastroutingin d&tagrazninternet-

works and extended LANe. ACM Transactionson Computer Systems,8(2):85-110,May

1990.

[GT90]

[JZSTl

[KT91]

[KTHB89]

[Lam78]

Ajel Gopal and Sam Toueg. On the specification of broadcast. In Preceedings of the See-

ond IEEE International Worl_hop on Future Trend# of D@tributed Computing Systems,

pages 54-56, Cairo, Egypt, October 1990. IEEE Computer Society.

David B. Johnson and W'dly Zwaenepoel. Sender-based message logging. In The Sev-

enteenth Annual International Symposium on F&ult-Tolerant Computing: Digest of

Papers, pages 14-19. Institution of Electrical and Electronic Engineers, June 1987.

M.F. Ka_hoek and A.S. Tanenbaum. Group communication in the amoeba distributed

operating system. In Pine. The llth Internatinal Conference on Distributed Computer

Systems., pages 222-230, Arlington, VA, May 1991. Institution of Electrical and Elec-

tronic Engineers.

M. Frans Kaaahoek, Andrew S. Tanenbanm, Susan Flynn Hummel, and Henri E. Bal.

An efficientreliablebroadcastprotocol.Opemtin@ Systems Ree/ew,23(4):5-19,October

1989.

LeslieLamport. Time, clocks,and the orderingof events in a distributedsystem.

Communications o.f the ACM, 21(7):558-56,5, July 1978.

[LLSg0] Rivlm Ladla, Barbara Liskov, and Liub& Shrira. Lazy replication: Exploring the seman-

tics of distributed services. In Proceedings of the Tenth A CM S_npoeium on Princi.

ple_ ojf Distrilmt_d Computing, pages 43-58, Qeubec City, Quebec, August 1990. ACM

SIGOPS-SIGACT.

[LS83] Barbara Liskov and R. Scheifler.Guardians and actions:Linguisticsupport forrobust.

distributed programs. ACM Transaction# on Programming Languages and Systems,

5(3):381-404, July 1983.

3O

[oss8o]

[PBS89]

[P,.as86]

[R.ep9O]

[s 88]

[Sp,SS]

[SY85]

John Ousterhout, D. A. Scelza, and P. S. Sindhu. Medusa: an experiment in distributed

operating structure. Communication_j of the A C_, 23(2):92-105, February 1980.

Larry L. Petermn, Nick C. Bucholz, and Richard Schlichting. Preserving and using

context inform&tion in interprocess communication. AC_ Tvanaactions on Computer

Systems, 7(3):217-246, August 1989.

11. F. Rashld. Threads of & new system. Un/z Review, 4:37--49, August 1986.

John H. Reppy. Concurrent Programming with Events--The Concurrent ML Manual

(version 0.9). Department of Computer Science, Coruell University, Upson Ha_l, Ithaca,

NY 14853, November 1990.

Frank Schmuck. The use of E_icient Broadcast Primitives in Asynchronous Distributed

Systems. PhD thesis, Cornell University, 1988.

A/fred Spector. Distributed transa_tious for reliable systems. In Proceedings of the

Tenth A CM Symposium on Operating Spstems Principles, pages 127-146, Orcas Island,

Washington, December 1985. ACM SIGOPS.

Ray Strom and S. Yemeni. Optimistic recovery in distributed systems. ACM Tmnsac.

tions on Computer Systems, 3(3):204-226, April 1985.

31

